

Allgemein

Vor jeder Aufgabe/Aktion in AGIS müssen folgende Schritte erfolgen:

1. AGPS/AGIS und Empfänger

- Legen Sie in AGPS ein Profil für den Empfänger an (oben rechts) oder
- überspringen Sie diesen Schritt insofern bereits ein Profil existiert.
- Neues Profil:
 - Vergeben Sie einen Profilnamen (z. B. Seriennummer des Empfängers).
 - Klicken Sie die Schaltfläche Gerät und anschließend Gerät suchen.
 - Es werden alle Geräte in der Nähe angezeigt, die via Bluetooth erkannt werden.
 - Wählen Sie den Alberding Empfänger aus. Sie erkennen ihn anhand der Seriennummer.
 - Mit der "Zurücktaste" des Smartphones/Tablets gelangen Sie ins Hauptmenü und das Profil ist erstellt.

Alle weiteren Schritte müssen in der AGIS Anwendung erfolgen.

2. Projekt

• Bestehendes Projekt öffnen

oder

- Neues Projekt anlegen.
 - Projektnamen vergeben.
 - Koordinatensystem auswählen.

3. GPS

- GPS aus/an: Verbindung mit Empfänger herstellen.
- Stabhöhe ändern: Geben Sie die Stabhöhe in Zentimeter an.
 - Die Höhe der gemessenen Punkte wird entsprechend angepasst.

4. Download Offline Karte

• Aktivieren Sie den Hintergrundlayer Alberding OSM

(Menü Layer -> Hintergrundlayer -> roter Haken auf dem Kartensymbol).

- Wechseln Sie anschließen in das Menü Download Offline Karte.
 - Der rote Rahmen gibt den Bereich an, der Offline dargestellt wird.
 - Legen Sie diesen selbst fest, indem Sie mit den Fingern einen Bereich aufziehen.
 - Details: Je mehr Details Sie wählen, desto mehr Zoomstufen werden gespeichert.
 - Name: Vergeben Sie für den Downloadbereich einen Namen.
- Im Menü Layer -> Hintergrundkarte wird der Downloadstatus angezeigt.
- Klicken Sie auf diese Karte. Mit dem roten Haken wird Ihre Auswahl bestätigt und die Offlinekarte wird angezeigt.

Achtung: Ändern Sie nach der Aktivierung der Offlinekarte die Zoomstufe im Hauptfenster. Abhängig von der gewählten Detailstufe (*Details:*) ist die Offlinekarte erst ab einer bestimmten Zoomstufe sichtbar.

5. GNSS Informationen

- Klicken Sie oben rechts auf die 5 Felder und folgender Dialog (vgl. Abb. 1) öffnet sich.
- RMSH Horizontale Genauigkeit, RMSV Vertikale Genauigkeit, DAge Datenalter
- Augmentation Data Lösungstyp:
 - A Autonomous (Standalone) -> Positionsberechnung ohne Korrekturdaten.
 - F Float -> Positionsberechnung mit Korrekturdaten (keine Lösung der Trägerphasen Mehrdeutigkeit).
 - R RTK (Fix) -> Positionsberechnung mit Korrekturdaten (Lösung der Trägerphasen Mehrdeutigkeit).
 - V Ungültig -> Keine Daten vom Empfänger.
- Die Felder sind farblich hinterlegt und haben folgende Bedeutung:
 - Rot Keine Satelliten verfügbar.
 - Gelb Berechnung einer Positionslösung nicht möglich.
 - Grün Berechnung einer Positionslösung möglich.
 - Blau Berechnung einer Positionslösung mit Korrekturdaten.

		0,01	0,01
GPS	Status		1
0,01	RMSH		
0,01	RMSV		A feet
17	Anzahl Satelliten		
			- 1
4	DAge		
_			1
R	Augmentation Data		500
_			

Abbildung 1: GNSS Information

1. Aufnahme

- Messmodi auswählen (Punkt, Punkte, Linie oder Fläche).
- Ziel Layer auswählen.
- Messung starten.
- Evtl. Bemerkung zum erfassten Messobjekt verfassen.

2. Feature

• Featureliste: Hier sind alle Layer und deren Messobjekte aufgelistet.

3. Messdaten

• Die Messdaten werden im entsprechenden Projekt im folgenden Verzeichnis gespeichert:

/storage/emulated/0/eEntwicklung.net/eGIS/eProjects/<Projekt>/

- Verbinden Sie das Smartphone oder Tablet mit einem Rechner via USB und kopieren Sie das Projekt.
- Die Shape-Dateien (shp, shx und dbf) können zur Weiterverarbeitung in ein GIS-System (QGIS, ArcGIS, usw.) importiert werden.
- Die dbf-Datei kann auch mit Excel geöffnet werden. Die Darstellung erfolgt dann tabellarisch wie in der *Featureliste*.

Aufnahme von georeferenzierten Fotos

1. Aufnahme

- Messmodi Punkt auswählen.
- Ziel Layer Photos auswählen.
- Messung starten.
 - Neues Foto aufnehmen

oder

- Bestehendes Fotos auswählen.

• Evtl. Bemerkung zum erfassten Messobjekt verfassen.

2. Feature

• *Featureliste*: Im Layer *Photos* sind die Messobjekte aufgelistet. Zur gemessenen Koordinate wird der Dateiname des Fotos angezeigt.

3. Speicherung

• Die Fotos werden im entsprechenden Projekt im folgenden Verzeichnis gespeichert:

/storage/emulated/0/eEntwicklung.net/eGIS/eProjects/<Projekt>/Images/

Absteckung

1. Punkte, Linien, Flächen existieren bereits in einem Projekt (Shape-Dateien)

- Wählen Sie das Menü Navigation.
- Es können händisch Koordinaten eingegeben
 - oder
- Features mit dem Werkzeug Auswahl+ (Pfeil) ausgewählt werden.
- Mit einem Klick auf das Fadenkreuz kann dieses vergrößert werden.

2. Punkte, Linien, Flächen existieren nicht in einem Projekt

- Importieren einer Textdatei (*.txt).
- Folgende Formatierung muss eingehalten werden:
 - Note (z. B. Punktnummer) X Y Z

oder

- Note (z. B. Punktnummer) X Y
- Die Spalten müssen mindestens mit einem Leerzeichen getrennt sein.
- Folgende Vorgehensweise sollten Sie beim Laden beachten:
 - Projekt in AGIS anlegen
 - Datei in das Projektverzeichnis (eEntwicklung.net/eGIS/eProjects/<Projektname>/) kopieren
 - Projekt in AGIS neu öffnen

- Das Koordinatensystem muss identisch sein (Projekt in AGIS und Punkte in Textdatei).
- Für die Daten wird automatisch ein neuer Layer angelegt. Der Name des Layers entspricht dem Namen der Datei.

Die importierten Elemente können, wie zuvor beschrieben, abgesteckt werden.

Werkzeuge

1. Stützpunkte bearbeiten

- Feature mit dem Werkzeug Auswahl+ (Pfeil) auswählen.
- Werkzeug *Stützpunkte bearbeiten* anklicken.
- *GPS*
- Messung starten.

2. Feature kopieren

- Feature mit dem Werkzeug Auswahl+ (Pfeil) auswählen.
- Werkzeug Feature kopieren anklicken.
- Speichern.
- Das *Feature* wird in denselben Layer gespeichert.

3. Feature erstellen

- Werkzeug *Feature erstellen* anklicken.
- Feature *Fläche* oder *Linie* auswählen (unten).
- *Punkte* nacheinander mit dem Werkzeug Auswahl+ (Pfeil) auswählen.
 - Für eine Fläche mindestens drei Punkte und für eine Linie mindestens zwei.
- Die Auswahl kann gelöscht werden, indem Sie das rote X (unten neben Speichern) anklicken.
- Speichern.

4. Feature -> Punkte

Mit diesem Werkzeug können die gemessenen Punkte von Flächen und Linien gespeichert werden.

• Werkzeug *Feature -> Punkte* anklicken.

- Feature (Fläche oder Linie) mit dem Werkzeug Auswahl+ (Pfeil) auswählen.
- Speichern anklicken.
- Ziel Layer auswählen.

5. Raster erstellen

- Werkzeug Raster erstellen anklicken.
- Fläche oder Linie mit dem Werkzeug Auswahl+ (Pfeil) auswählen.
- Rasterbreite eingeben.
- Startpunkt der Berechnung:
 - GPS aktiv der Startpunkt ist der Standpunkt.

oder

- GPS nicht aktiv Koordinate des Startpunkts kann eingegeben werden.
- Erstellen und Speichern anklicken.
- Ziel Layer auswählen.

